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LElTER TO THE EDITOR 

Basins of attraction near the critical storage capacity for 
neural networks with constant stabilities 

M Opper, J Kleinz, H Kohler and W Kinzel 
Institut fur Theoretische Physik 111, Justus-Liebig-Universitat Giessen, Heinrich-Buff -Ring 
16, D-6300 Giessen, Federal Republic of Germany 

Received 12 October 1988, in final form 14 February 1989 

Abstract. The dynamics of neural networks with constant stabilities is studied analytically 
for states in the vicinity of a stored pattern. Only two parameters of the synaptic matrix 
determine the dynamics of the neurons in the cases considered. The resulting equations 
are able to predict the basin of attraction near the critical storage capacity. We compare 
our analytical results with simulations of two network models. 

Neural networks have recently been investigated using models and methods of the 
statistical mechanics of disordered materials (Mezard et a1 1987). Such models may 
be considered as content addressable memory. They allow one to store a set of P 
patterns S" = (Sy,  , . . , Sh), v = 1 , .  . . , P, as attractors in a system of N interconnected 
two-state neurons Si E {-1, +1} and to retrieve them exactly or almost perfectly from 
a distorted input version. Many static features of simple spin-glass-type networks are 
now well understood. For the special case of networks with symmetric coupling 
matrices stationary states can be calculated by means of equilibrium statistical 
mechanics (Amit et a1 1987). A more difficult and still unsolved problem is the 
determination of the basin of attraction for a network with P = (YN extensively many 
random patterns, i.e. the maximum amount of initial distortion under which the network 
will be able to retrieve a pattern. The quantity of interest is the overlap between a 
state Si(  t ) ,  i = 1 , .  . . , N, and a pattern SI at time t 

m ( t ) =  N - ' C S : S i ( t )  
I 

evolving from a noisy initial state 

Si(0) = 
with probability f( 1 + m ( 0 ) )  
with probability f(1- m ( 0 ) ) .  (1) is: -Si' 

If m ( m )  = 1, the network can retrieve the pattern perfectly. One is interested in the 
critical initial overlap m(O), above which retrieval is possible with a high probability. 
We assume that the dynamics of the network is given by a parallel update of the neurons 

(2) 
where hi is the internal field 

Si( t + 1) = sgn( hi( t)) 

hi( t )  = J$~(  t )  
i 

and Jij denote the synaptical couplings. We shall use Jii = 0 throughout the letter. 
Exact results for the dynamics of the overlap could be given only in the case of 

strongly diluted networks (Demda er al 1987) and for one-layer (Krauth er a1 1988a) 
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and multilayered feed-forward networks (Meir and Domany 1987, 1988). Apart from 
various numerical simulations only a few approximate analytical approaches exist for 
totally connected single-layer feedback systems. 

Kinzel (1985) has derived a mean-field approximation for the Hopfield model 
which neglects correlations completely; this approximation becomes exact in the 
extremely diluted network (Derrida et a1 1987). Horner (1988) has matched a result 
valid for short times onto the asymptotic (fixed point) region to find an approximation 
to the dynamics of the Hopfield model. Krauth et a1 (1988b) studied the dynamics of 
an auxiliary model, the one-pattern model which approximates an actual system by 
incorporating only the stability and asymmetry of the actual network as parameters. 
The dynamics of the model itself must be solved by simulations apart from the first 
few parallel time steps. 

In this letter we show that for a special class of such networks, namely those with 
constant stabilities of the stored patterns, the dynamics of the overlap can be solved 
in the vicinity of the attractor m(oo)=l.  Thus one is able to study very easily the 
retrieval properties of the networks near the critical storage capacity, where the basin 
of attraction is a small region near m = 1. 

The special condition to be fulfilled by the networks is that for all patterns v and 
neurons i the so-called stabilities 

are equal to a positive constant A. 
Such networks are of great interest because learning algorithms, which enable the 

systems to store a prescribed set of patterns, are naturally defined by any procedure 
which minimises the quadratic form 

I \ 2  

with respect to the couplings J g .  For continuous Jg a corresponding learning algorithm 
which leads to the pseudo-inverse coupling matrix (Kohonen 1988, Personnaz et a1 
1986) has been recently discussed (Diederich and Opper 1987). Even for a model with 
binary synapses Jij = * 1 / m ,  a case which may be of technical importance, a simple 
descent of H will lead to a network with only a small variation AA; of stabilities 
(Kohler 1989). 

Our analysis of the network’s dynamics is based on the exact expression for the 
overlap at time t + 1 averaged over the initial conditions (1) 

dhP,(h, i)sgn(h) (4) 
I 

where P,(h,  i )  denotes the probability distribution of the internal field at site (neuron) 
i and time t and ( - )  denotes the average. For the pattern S I  which has to be recognised 
by the network we have chosen S: = 1, i = 1, .  . . , N, for simplicity. 

If m ( t )  = 1, i.e. S(  t )  = SI, the constant stabilities (3) lead to P,(h, i )  = 6 ( h  -A). 
Thus for m ( t )  in the vicinity of 1, the field distribution can to lowest order be taken 
as Gaussian with a variance 

A;( t )  = (h:( 2 ) )  - ( h i (  t))’ 

converging to zero for m( t )  + 1. 
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Due to the independence of the Si(0) the assumption of Gaussian distributed 
internal fields is exact for t = 0 and all values of m(0).  In this case one has 

(hi(0)) = Af(0) = (1 - m2(0) )J2  ( 5 )  

Where J 2  = Xj J$ is self-averaging with respect to the random patterns for N + 00. For 
the following time step t = 1, the mean and variance of the field distributions can be 
written as 

k, 1 
k # f  

where we have used the fact that the distributions for t = O  are independent of site i. 
The second part of the variance, containing correlations at different sites, can be 

evaluated using the joint density of hk(0) and hl (0 ) .  
However, since the covariance 

(Ahk(0) Ah/(())) = JkJfj(1- ”(0)) 
j 

is of order l/m, an expansion up to first order in these fluctuations is sufficient. 
Thus we find 

For m(0) L- 1 the second term can be neglected in comparison with the first. In this 
limit the dynamics is equivalent to that for strongly diluted networks, where site-site 
correlations vanish. 

For t > 1 the above arguments can be successively repeated, so that we can establish 
the one-step recursion 

which is asymptotically valid for m( t )  = 1. 
The basin of attraction near m ( t )  = 1 is limited by the unstable fixed points of (8). 
We have compared our analytical result with numerical simulations for two network 

models. Figure 1 displays the case of continuous (pseudo-inverse) couplings, where 
for random patterns one has A = 1 - a and J2 = a ( 1 -  a). The simulational data were 
taken from Kanter and Sompolinsky (1987). Basins of attraction for a binary coupling 
model are shown in figure 2. For the latter system we had to account for small but 
non-zero fluctuations of the stabilities hr .  To lowest order this yields an additional 
contribution to the variance, which is given by 

where (AA)’ is the variance of the stabilities. In figure 2 we take a binary coupling 
matrix Ju = *l/m which was obtained from a descent algorithm by minimising the 
quadratic deviation from equation (3) with A = 1 (Kohler 1989). We compare the 
basins of attraction obtained from direct simulation of the corresponding network with 
that given by the approximation, (8). Since the stabilities are distributed, we take the 
parameters ( A i )  and (AA)’ from the numerical data. (Note that A in (8) has to be 
replaced by (A :).) For this model the matrix of couplings is in general non-symmetric. 

A:(t) = ( 1  - m2( t ) ) J 2 +  (AA)2m2(t) (9) 
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Figure 1. Overlap m as a function of storage capacity a for networks with pseudo-inverse 
couplings. m = 1 is the attractor, and the basin of attraction extends to the lower curve. 
The points are numerical data from Kanter and Sompolinsky (1987). 
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Figure 2. Same as figure 1 for networks with binary couplings. The open circles are data 
from numerical simulations (Kohler 1989) with N = 2-56. The full triangles are given by 
the present theory where the parameters of the coupling matrix are taken from simulations. 



fetter to the Editor L411 

The present results show that the asymptotic dynamics (8) is in fact able to predict 
the shape of the basins of attraction near the critical storage capacity for networks 
with constant stabilities. In order to cover the whole region of capacities at least 
approximately one must, however, account for the correlations between different 
neurons as well as for the non-Gaussian shape of the field distribution. Such a 
programme is currently being investigated. 

This work has been supported by the Deutsche Forschungsgemeinschaft, and is part 
of the Diploma thesis of JK. 
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